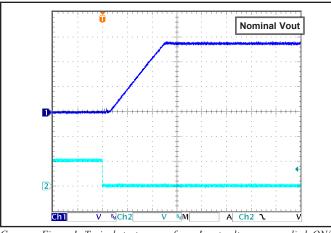


Phone 1-888-<u>567-9596</u>

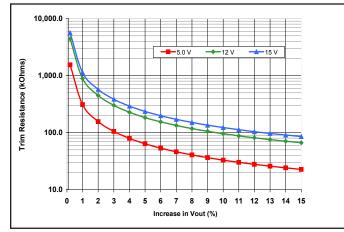
www.synqor.com

Page 1

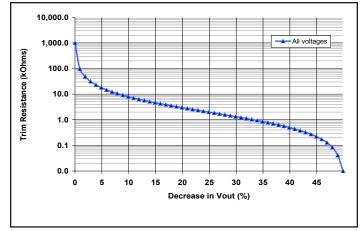



# IQ24 FAMILY ELECTRICAL CHARACTERISTICS (all output voltages)

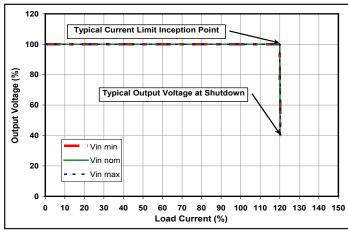
Ta = 25 °C, airflow rate = 300 LFM, Vin = 24V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.


| -40    |                                                                      | 50<br>40<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Continuous<br>Continuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -40    | =                                                                    | 40<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -40    |                                                                      | 40<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -40    |                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Continuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -40    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -40    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 s transient, square wave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -40    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -40    |                                                                      | 2250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V dc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -40    |                                                                      | 2250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V dc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -40    |                                                                      | 2250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V dc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Baseplate temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -55    |                                                                      | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -2     |                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 18     | 24                                                                   | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50V transient for 1 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 16.5   | 17.0                                                                 | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15.0   | 15.5                                                                 | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.0    | 1.5                                                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | -                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 470                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Typical ESR 0.1-0.2 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | 0.34\23                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | µH\µF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Internal values; see Figure C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24     | 35                                                                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Full load, Vout=90% nom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        |                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maximum Output Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 500                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | See Application Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | See Absolute Maximum Ratings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | 30                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 1000                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | See Note 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CURVES |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                      | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Package rated to 150 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                      | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UL rated max operating temp 130 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                      | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 230    | 240                                                                  | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Insolation stage switching freq. is half this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.4    |                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -2     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Application notes Figure A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 5                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 10                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Average PCB Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 1,49                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 <sup>6</sup> Hrs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tb = 70°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $Tb = 70^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | See our website for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | 18<br>16.5<br>15.0<br>1.0<br>24<br><b>CURVES</b><br>230<br>2.4<br>-2 | 18       24         16.5       17.0         15.0       15.5         1.0       15.5         1.0       15.5         1.0       15.5         1.0       15.5         1.0       15.5         1.0       15.5         1.0       1.5         24       35         24       35         2500       500         24       30         1000       1000         200       240         230       240         230       240         230       240         21       5         10       125         10       10         125       10         10       125         10       1.49         1.31       1.49 | 18       24       36         16.5       17.0       17.5         15.0       15.5       16.0         15.0       15.5       16.0         1.0       1.5       2.0         1.0       1.5       2.0         -       470       0.34\23         24       35       40         24       35       40         500       500       500         24       35       40         500       500       500         24       35       40         500       500       500         24       35       40         250       500       500         24       35       125         1000       125       125         250       250       100         230       240       250         230       240       250         24       5       0.8         5       10       0.8         100       125       125         10       125       125         10       125       125         10       125       125 | 18         24         36         V           16.5         17.0         17.5         V           15.0         15.5         16.0         V           15.0         15.5         16.0         V           1.0         1.5         2.0         V           1.0         1.5         2.0         V           470         V $\mu$ F $\nu$ 0.34\23 $\mu$ $\mu$ F           0.34\23 $\mu$ $\mu$ F           24         35         40         ms           500         ms $m$ $m$ 24         35         40         ms           30 $f$ $m$ $m$ 1000 $m$ $m$ $m$ 30 $125$ $^{\circ}$ C $m$ 1000 $m$ $m$ $m$ 230 $240$ $250$ $k$ Hz           230 $240$ $250$ $k$ Hz           2.4 $m$ $m$ $m$ 2.4 $m$ $m$ $m$ |

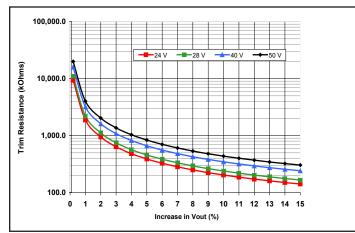



# Family Figures (all output voltages)




Common Figure 1: Typical startup waveform. Input voltage pre-applied, ON/ OFF Pin on Ch 2.




Common Figure 3: Trim graph for trim-up 5.0 to 15V outputs.



Common Figure 5: Trim graph for trim down.



Common Figure 2: Output voltage vs. load current showing typical current limit curves and converter shutdown points.



Common Figure 4: Trim graph for trim-up 24 to 50V outputs.

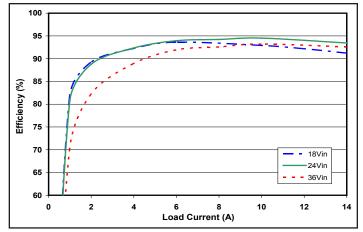


# Input:18-36V **Output:28V Current:14A** Part No.: IQ24280HEx14

# IQ24280HZx14 ELECTRICAL CHARACTERISTICS (28.0 Vout)

Ta = 25 °C, airflow rate = 300 LFM, Vin = 24V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.

| Parameter                                    | Min.   | Тур.  | Max.   | Units | Notes & Conditions                          |
|----------------------------------------------|--------|-------|--------|-------|---------------------------------------------|
| INPUT CHARACTERISTICS                        |        |       |        | Ì     |                                             |
| Maximum Input Current                        |        |       | 32.2   | А     | Vin min; trim up; in current limit          |
| No-Load Input Current                        |        | 300   | 380    | mA    |                                             |
| Disabled Input Current                       |        | 100   | 160    | mA    |                                             |
| Response to Input Transient                  |        | 2.5   |        | V     | See Figure 6                                |
| nput Terminal Ripple Current                 |        | 250   |        | mA    | RMS                                         |
| Recommended Input Fuse                       |        |       | 40     | A     | Fast acting external fuse recommended       |
| DUTPUT CHARACTERISTICS                       |        |       |        |       |                                             |
| Dutput Voltage Set Point                     | 27.54  | 28    | 28.39  | V     |                                             |
| Dutput Voltage Regulation                    |        |       |        |       | See Note 3                                  |
| Over Line                                    |        | ±0.25 |        | %     |                                             |
| Over Load                                    |        | ±0.25 |        | %     |                                             |
| Over Temperature                             | -700   |       | 700    | mV    |                                             |
| Fotal Output Voltage Range                   | 27.160 |       | 28.840 | V     | Over sample, line, load, temperature & life |
| Dutput Voltage Ripple and Noise              |        |       |        |       | 20 MHz bandwidth; see Note 1                |
| Peak-to-Peak                                 |        | 110   | 220    | mV    | Full load                                   |
| RMS                                          |        | 25    | 50     | mV    | Full load                                   |
| Dperating Output Current Range               | 0      |       | 14     | A     | Subject to thermal derating                 |
| Dutput DC Current-Limit Inception            | 16.0   | 17.5  | 19.0   | А     | Output voltage 10% Low                      |
| Dutput DC Current-Limit Shutdown Voltage     |        | 11.2  |        | V     | See Note 2                                  |
| Back-Drive Current Limit while Enabled       | 3      | 4     | 6      | А     | Negative current drawn from output          |
| Back-Drive Current Limit while Disabled      | 0      | 3     | 4      | mA    | Negative current drawn from output          |
| Iaximum Output Capacitance                   |        |       | 5000   | μF    | Vout nominal at full load (resistive load)  |
| Dutput Voltage during Load Current Transient |        |       |        |       |                                             |
| Step Change in Output Current (0.1 - 5 A/µs) |        | 1.0   |        | V     | 50% to 75% to 50% Iout max                  |
| Settling Time                                |        | 8     |        | ms    | To within 1% Vout nom                       |
| Dutput Voltage Trim Range                    | -50    |       | 20     | %     | Across Pins 8&4; Common Figures 3-5;        |
| Dutput Voltage Remote Sense Range            |        |       | 10     | %     | Across Pins 8&4                             |
| Dutput Over-Voltage Protection               | 35.0   | 36.4  | 37.8   | V     | Over full temp range                        |
| EFFICIENCY                                   | ·      | ·     | '<br>  | ·<br> |                                             |
| 100% Load                                    |        | 93    |        | %     | See Figure 1 for efficiency curve           |
| 50% Load                                     |        | 95    |        | %     | See Figure 1 for efficiency curve           |


Note 1: Output is terminated with 1 µF ceramic and 15 µF low-ESR tantalum capacitors. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com) Note 2: If the output voltage falls below the Output DC Current Limit Shutdown Voltage for more than 50ms, then the unit will enter into hiccup mode,

with a 500ms off-time

Note 3: Line and load regulation is limited by duty cycle quantization and does not indicate a shift in the internal voltage reference

# **Technical Specification**

# Input:18-36V Output:28V **Current:14A** Part No.: IQ24280HEx14



Syn

Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

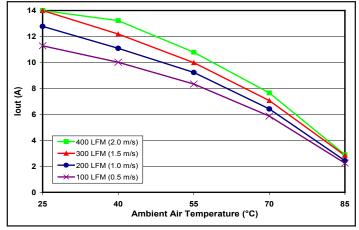



Figure 3: Encased converter (without heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

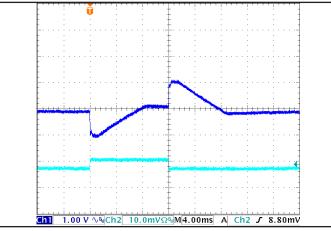



Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max);  $dI/dt = 0.1A/\mu s$ . Load cap: 100 $\mu F$  electrolytic cap and  $1\mu F$ ceramic cap. Ch 1: Vout, Ch 2: Iout (10 A/div).

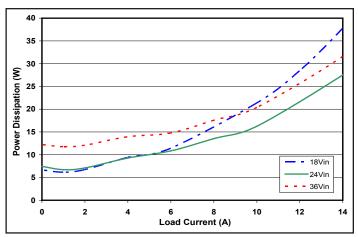



Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

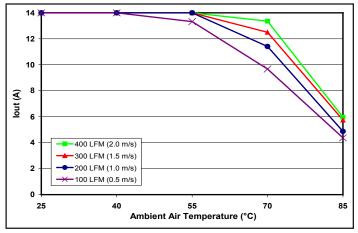



Figure 4: Encased converter (with 1/2" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

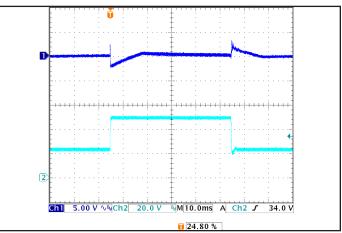


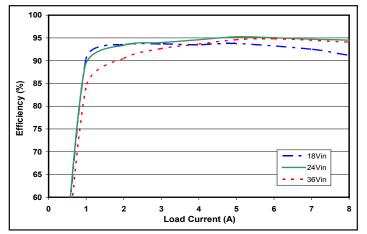

Figure 6: Output voltage response to step-change in input voltage (250 V/ms), at Max. load current.Load cap: 100µF electrolytic cap and 1µF ceramic cap.Ch 1: Vout, Ch 2: Vin.



# Input:18-36V **Output:50V Current:8.0A** Part No.: IQ24500HEx08

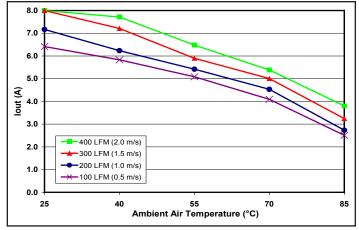
# IQ24500HZx08 ELECTRICAL CHARACTERISTICS (50.0 Vout)

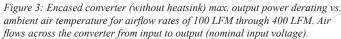
Ta = 25 °C, airflow rate = 300 LFM, Vin = 24V dc unless otherwise noted; full operating temperature range is -40 °C to +100 °C baseplate temperature with appropriate power derating. Specifications subject to change without notice.


| Parameter                                    | Min.   | Тур.  | Max.   | Units | Notes & Conditions                          |
|----------------------------------------------|--------|-------|--------|-------|---------------------------------------------|
| INPUT CHARACTERISTICS                        |        |       |        |       |                                             |
| Maximum Input Current                        |        |       | 32.2   | А     | Vin min; trim up; in current limit          |
| No-Load Input Current                        |        | 300   | 380    | mA    |                                             |
| Disabled Input Current                       |        | 100   | 160    | mA    |                                             |
| Response to Input Transient                  |        | 4     |        | V     | See Figure 6                                |
| Input Terminal Ripple Current                |        | 150   |        | mA    | RMS                                         |
| Recommended Input Fuse                       |        |       | 40     | А     | Fast acting external fuse recommended       |
| OUTPUT CHARACTERISTICS                       |        |       |        |       |                                             |
| Output Voltage Set Point                     | 49.18  | 50    | 50.70  | V     |                                             |
| Output Voltage Regulation                    |        |       |        |       | See Note 3                                  |
| Over Line                                    |        | ±0.25 |        | %     |                                             |
| Over Load                                    |        | ±0.25 |        | %     |                                             |
| Over Temperature                             | -1250  |       | 1250   | mV    |                                             |
| Total Output Voltage Range                   | 48.500 |       | 51.500 | V     | Over sample, line, load, temperature & life |
| Output Voltage Ripple and Noise              |        |       |        |       | 20 MHz bandwidth; see Note 1                |
| Peak-to-Peak                                 |        | 200   | 400    | mV    | Full load                                   |
| RMS                                          |        | 50    | 100    | mV    | Full load                                   |
| Operating Output Current Range               | 0      |       | 8      | А     | Subject to thermal derating                 |
| Output DC Current-Limit Inception            | 9.0    | 10.0  | 11.0   | А     | Output voltage 10% Low                      |
| Output DC Current-Limit Shutdown Voltage     |        | 20    |        | V     | See Note 2                                  |
| Back-Drive Current Limit while Enabled       | 1      | 3     | 4      | А     | Negative current drawn from output          |
| Back-Drive Current Limit while Disabled      | 0      | 3     | 7      | mA    | Negative current drawn from output          |
| Maximum Output Capacitance                   |        |       | 1000   | μF    | Vout nominal at full load (resistive load)  |
| Output Voltage during Load Current Transient |        |       |        |       |                                             |
| Step Change in Output Current (0.1 - 5 A/µs) |        | 1.5   |        | V     | 50% to 75% to 50% Iout max                  |
| Settling Time                                |        | 8     |        | ms    | To within 1% Vout nom                       |
| Output Voltage Trim Range                    | -50    |       | 10     | %     | Across Pins 8&4; Common Figures 3-5;        |
| Output Voltage Remote Sense Range            |        |       | 10     | %     | Across Pins 8&4                             |
| Output Over-Voltage Protection               | 56.5   | 59.0  | 61.5   | V     | Over full temp range                        |
| EFFICIENCY                                   | ·      | ·     | ·      | ·     |                                             |
| 100% Load                                    |        | 95    |        | %     | See Figure 1 for efficiency curve           |
| 50% Load                                     |        | 95    |        | %     | See Figure 1 for efficiency curve           |

Note 1: Output is terminated with 1 µF ceramic capacitor. For applications requiring reduced output voltage ripple and noise, consult SynQor applications support (e-mail: support@synqor.com)

Note 2: If the output voltage falls below the Output DC Current Limit Shutdown Voltage for more than 50ms, then the unit will enter into hiccup mode, with a 500ms off-time


Note 3: Line and load regulation is limited by duty cycle quantization and does not indicate a shift in the internal voltage reference


# Input:18-36V Output:50V Current:8.0A Part No.:1Q24500HEx08



**Technical Specification** 

Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.





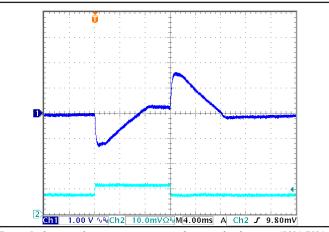



Figure 5: Output voltage response to step-change in load current (50%-75%-50% of Iout(max);  $dI/dt = 0.1A/\mu s$ . Load cap:  $100\mu F$  electrolytic cap and  $1\mu F$  ceramic cap. Ch 1: Vout, Ch 2: Iout (5 A/div).

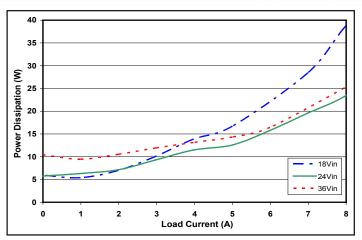



Figure 2: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C.

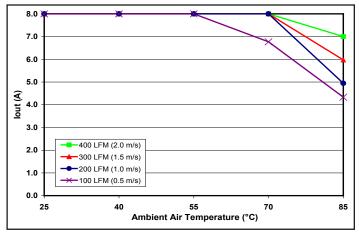



Figure 4: Encased converter (with 1/2" heatsink) max. output power derating vs. ambient air temperature for airflow rates of 100 LFM through 400 LFM. Air flows across the converter from input to output (nominal input voltage).

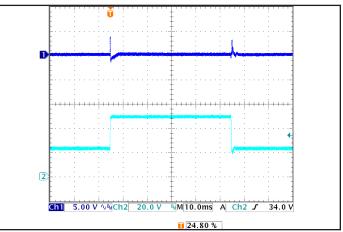



Figure 6: Output voltage response to step-change in input voltage (250 V/ms), at Max. load current. Load cap:  $100\mu$ F electrolytic cap and  $1\mu$ F ceramic cap.Ch 1: Vout, Ch 2: Vin.



# **BASIC OPERATION AND FEATURES**

The converter series uses a two-stage power conversion topology. The first stage keeps the output voltage constant over variations in line, load, and temperature. The second stage uses a transformer to provide the functions of input/output isolation and voltage stepdown to achieve the low output voltage required.

Both the first stage and the second stage switch at a fixed frequency for predictable EMI performance. Rectification of the transformer's output is accomplished with synchronous rectifiers. These devices, which are MOSFETs with a very low on-state resistance, dissipate significantly less energy than Schottky diodes, enabling the converter to achieve high efficiency.

The series of half-brick, quarter-brick and eighth-brick converters uses the industry standard footprint and pin-out configuration.

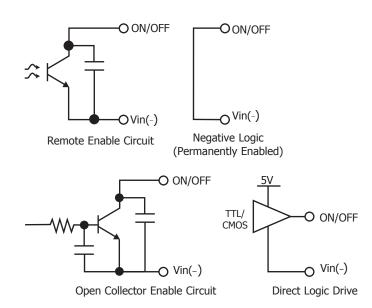



Figure A: Various circuits for driving the ON/OFF pin.

# **CONTROL FEATURES**

**REMOTE ON/OFF (Pin 2):** The ON/OFF input, Pin 2, permits the user to control when the converter is on or off. This input is referenced to the return terminal of the input bus, Vin(-).

The ON/OFF signal is active low (meaning that a low voltage turns the converter on). Figure A details four possible circuits for driving the ON/OFF pin.

**REMOTE SENSE(+) (Pins 8 and 6):** The SENSE(+) inputs correct for voltage drops along the conductors that connect the converter's output pins to the load.

Pin 8 should be connected to Vout(+) and Pin 6 should be connected to Vout(-) at the point on the board where regulation is desired. If these connections are not made, the converter will deliver an output voltage that is slightly higher than its specified value.

Note: The output over-voltage protection circuit senses the voltage across the sense leads (pins 8 and 6) to determine when it should trigger, not the voltage across the converter's output pins (pins 9 and 5).

**OUTPUT VOLTAGE TRIM (Pin 7):** The TRIM input permits the user to adjust the output voltage across the sense leads up or down according to the trim range specifications. SynQor uses industry standard trim equations.

To decrease the output voltage, the user should connect a resistor between Pin 7 (TRIM) and Pin 6 (SENSE(–) input). For a desired decrease of the nominal output voltage, the value of the resistor should be:

where

Rtrim-down = 
$$\left(\frac{100\%}{\Delta}\right)$$
 - 2k $\Omega$ 

$$\Delta\% = \left[ \begin{array}{c} \frac{\text{Vnominal} - \text{Vdesired}}{\text{Vnominal}} \right] \times 100\%$$

Doc.# 005-0005677 Rev. B 06/01/10



To increase the output voltage, the user should connect a resistor between Pin 7 (TRIM) and Pin 8 (SENSE(+) input). For a desired increase of the nominal output voltage, the value of the resistor should be

Rtrim-up = 
$$\left(\frac{Vnominal}{1.225} - 2\right) \times VDES + VNOM}{VDES - VNOM}$$
 K $\Omega$ 

Trim graphs show the relationship between the trim resistor value and Rtrim-up and Rtrim-down, showing the total range the output voltage can be trimmed up or down.

Note: The TRIM feature does not affect the voltage at which the output over-voltage protection circuit is triggered. Trimming the output voltage too high may cause the over-voltage protection circuit to engage, particularly during transients.

It is not necessary for the user to add capacitance at the Trim pin. The node is internally filtered to eliminate noise.

**Total DC Variation of Vout:** For the converter to meet its full specifications, the maximum variation of the DC value of Vout, due to both trimming and remote load voltage drops, should not be greater than that specified for the output voltage trim range.

# **Protection Features**

**Input Under-Voltage Lockout:** The converter is designed to turn off when the input voltage is too low, helping to avoid an input system instability problem, which is described in more detail in the application note titled "Input System Instability" on the SynQor website. The lockout circuitry is a comparator with DC hysteresis. When the input voltage is rising, it must exceed the typical "Turn-On Voltage Threshold" value\* before the converter will turn on. Once the converter is on, the input voltage must fall below the typical Turn-Off Voltage Threshold value before the converter will turn off.

**Output Current Limit:** If the output current exceeds the "Output DC Current Limit Inception" point\*, then a fast linear current limit controller will reduce the output voltage to maintain a constant output current. If as a result, the output voltage falls below the "Output DC Current Limit Shutdown Voltage"\* for more than 50 ms, then the unit will enter into hiccup mode, with a 500 ms off-time. The unit will then automatically attempt to restart.

**Back-Drive Current Limit:** If there is negative output current of a magnitude larger than the "Back-Drive Current Limit while Enabled" specification\*, then a fast back-drive limit controller will increase the output voltage to maintain a constant output current. If this results in the output voltage exceeding the "Output Over-Voltage Protection" threshold\*, then the unit will shut down. The full I-V output characteristics can be seen in Figure 15.

**Output Over-Voltage Limit:** If the voltage across the output pins exceeds the Output Over-Voltage Protection threshold, the converter will immediately stop switching. This prevents damage to the load circuit due to 1) excessive series resistance in output current path from converter output pins to sense point, 2) a release of a short-circuit condition, or 3) a release of a current limit condition. Load capacitance determines exactly how high the output voltage will rise in response to these conditions. After 500ms the converter will automatically restart for all but S Feature Set option, which is latching and will not restart until input power is cycled or the ON/OFF input is toggled.

**Over-Temperature Shutdown:** A temperature sensor on the converter senses the average temperature of the module. The thermal shutdown circuit is designed to turn the converter off when the temperature at the sensed location reaches the "Over-Temperature Shutdown" value\*. It will allow the converter to turn on again when the temperature of the sensed location falls by the amount of the "Over-Temperature Shutdown Restart Hysteresis" value\*.

\* See Electrical Characteristics page.



# **APPLICATION CONSIDERATIONS**

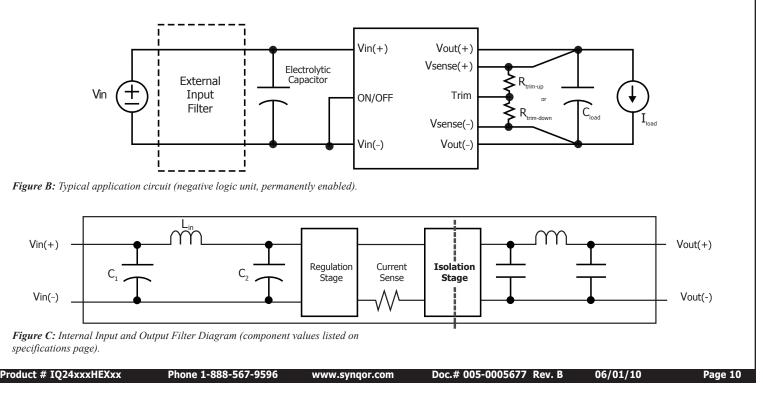
**Input System Instability:** This condition can occur because any DC-DC converter appears incrementally as a negative resistance load. A detailed application note titled "Input System Instability" is available on the SynQor website which provides an understanding of why this instability arises, and shows the preferred solution for correcting it.

**Application Circuits:** Figure B below provides a typical circuit diagram which details the input filtering and voltage trimming.

**Input Filtering and External Input Capacitance:** Figure C below shows the internal input filter components. This filter dramatically reduces input terminal ripple current, which otherwise could exceed the rating of an external electrolytic input capacitor. The recommended external input capacitance is specified in the Input Characteristics section on the Electrical Specifications page. More detailed information is available in the application note titled "EMI Characteristics" on the SynQor website.

**Output Filtering and External Output Capacitance:** Figure C below shows the internal output filter components. This filter dramatically reduces output voltage ripple. However, some minimum external output capacitance is required, as specified in the Output Characteristics section on the Electrical Specifications page. No damage will occur without this capacitor connected, but peak output voltage ripple will be much higher.

**Thermal Considerations:** The maximum operating base-plate temperature, TB, is 100 °C. As long as the user's thermal system keeps TB < 100 °C, the converter can deliver its full rated power.


A power derating curve can be calculated for any heatsink that is attached to the base-plate of the converter. It is only necessary to determine the thermal resistance, RTHBA, of the chosen heatsink between the base-plate and the ambient air for a given airflow rate. This information is usually available from the heatsink vendor. The following formula can the be used to determine the maximum power the converter can dissipate for a given thermal condition if its base-plate is to be no higher than 100 °C.

To increase the output voltage, the user should connect a resistor between Pin 7 (TRIM) and Pin 8 (SENSE(+) input). For a desired increase of the nominal output voltage, the value of the resistor should be

$$P_{diss}^{max} = \frac{100 \text{ °C - TA}}{\text{RTHBA}}$$

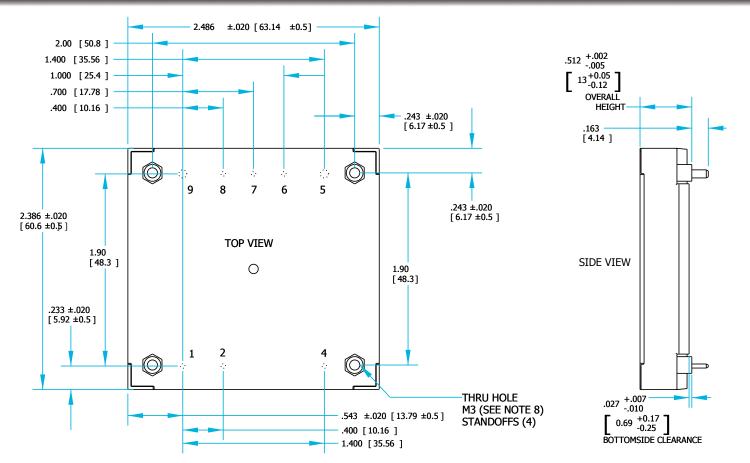
This value of power dissipation can then be used in conjunction with the data shown in Figure 2 to determine the maximum load current (and power) that the converter can deliver in the given thermal condition.

For convenience, Figures 3 and 4 provide Power derating curves for an encased converter without a heatsink and with a typical heatsink.





# Standards & Qualification Testing<br/>ParameterNotes & ConditionsParameterNotes & ConditionsSTANDARDS COMPLIANCEUL 60950-1: 2003Basic InsulationCAN/CSA-C22.2 No. 60950-1:2003EnsulationEN60950-1:2001ESD test, 8 kV - NP, 15 kV air - NP (Normal Performance)IEC 61000-4-2ESD test, 8 kV - NP, 15 kV air - NP (Normal Performance)


Note: An external input fuse must always be used to meet these safety requirements. Contact SynQor for official safety certificates on new releases or download from the SynQor website.

| Parameter             | # Units | Test Conditions                                                             |
|-----------------------|---------|-----------------------------------------------------------------------------|
| QUALIFICATION TESTING |         |                                                                             |
| Life Test             | 32      | 95% rated Vin and load, units at derating point, 1000 hours                 |
| Vibration             | 5       | 10-55 Hz sweep, 0.060" total excursion, 1 min./sweep, 120 sweeps for 3 axis |
| Mechanical Shock      | 5       | 100g minimum, 2 drops in x, y and z axis                                    |
| Temperature Cycling   | 10      | -40 °C to 100 °C, unit temp. ramp 15 °C/min., 500 cycles                    |
| Power/Thermal Cycling | 5       | Toperating = min to max, Vin = min to max, full load, 100 cycles            |
| Design Marginality    | 5       | Tmin-10 °C to Tmax+10 °C, 5 °C steps, Vin = min to max, 0-105% load         |
| Humidity              | 5       | 85 °C, 85% RH, 1000 hours, continuous Vin applied except 5 min/day          |
| Solderability         | 15 pins | MIL-STD-883, method 2003                                                    |
| Altitude              | 2       | 70,000 feet (21 km), see Note                                               |

Note: A conductive cooling design is generally needed for high altitude applications because of naturally poor convective cooling at rare atmospheres.

# Technical Specification

**Standard Mechanical Diagram** 



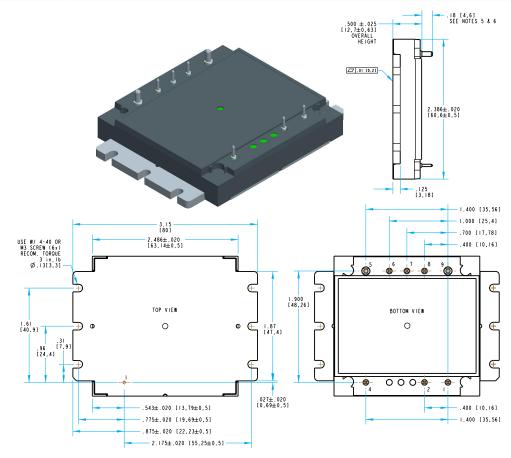
# NOTES

- 1) Applied torque per screw should not exceed 6in-lb. (0.7 Nm).
- 2) Baseplate flatness tolerance is 0.004" (.10 mm) TIR for surface.
- Pins 1-4, 6-8 are 0.040" (1.02mm) diameter, with 0.080" (2.03mm) diameter standoff shoulders.
- 4) Pins 5 and 9 are 0.080" (2.03 mm) diameter with 0.125" (3.18 mm) diameter standoff shoulders.
- 5) All Pins: Material Copper Alloy; Finish Matte Tin over Nickel plate
- 6) Undimensioned components are shown for visual reference only.
- 7) Weight: 4.9 oz (139 g)
- 8) Threaded and Non-Threaded options available

 All dimensions in inches (mm). Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm) x.xxx +/-0.010 in. (x.xx +/-0.25mm) unless otherwise noted.

- 10) Recommended pin length is 0.03" (0.76 mm) greater than the PCB thickness.
- 11) Workmanship: Meets or exceeds IPC-A-610C Class II

# **PIN DESIGNATIONS**


| Pin | Name     | Function                                                                             |
|-----|----------|--------------------------------------------------------------------------------------|
| 1   | Vin(+)   | Positive input voltage                                                               |
| 2   | ON/OFF   | TTL input to turn converter on and off, referenced to Vin(–), with internal pull up. |
| 4   | Vin(-)   | Negative input voltage                                                               |
| 5   | Vout(-)  | Negative output voltage                                                              |
| 6   | SENSE(-) | Negative remote sense <sup>1</sup>                                                   |
| 7   | TRIM     | Output voltage trim <sup>2</sup>                                                     |
| 8   | SENSE(+) | Positive remote sense <sup>3</sup>                                                   |
| 9   | Vout(+)  | Positive output voltage                                                              |

Notes:

- 1) SENSE(-) should be connected to Vout(-) either remotely or at the converter.
- 2) Leave TRIM pin open for nominal output voltage.
- 3) SENSE(+) should be connected to Vout(+) either remotely or at the converter.

# Flanged Mechanical Diagram

# Technical Specification



# NOTES

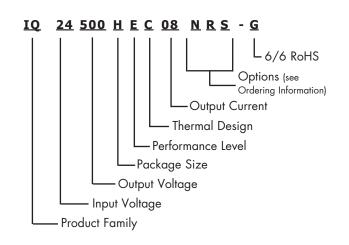
- 1) Applied torque per screw should not exceed 6in-lb. (0.7 Nm).
- 2) Baseplate flatness tolerance is 0.004" (.10 mm) TIR for surface.
- Pins 1, 2, 4, and 6-8 are 0.040" (1.02mm) diameter, with 0.080" (2.03mm) diameter standoff shoulders.
- Pins 5 and 9 are 0.080" (2.03 mm) diameter with 0.125" (3.18 mm) diameter standoff shoulders.
- 5) All Pins: Material Copper Alloy; Finish Matte Tin over Nickel plate
- 6) Undimensioned components are shown for visual reference only.
- 7) Weight: 4.9 oz (139 g)
- 8) Threaded and Non-Threaded options available

 All dimensions in inches (mm). Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm) x.xxx +/-0.010 in. (x.xx +/-0.25mm) unless otherwise noted.

- Recommended pin length is 0.03" (0.76 mm) greater than the PCB thickness.
- 11) Workmanship: Meets or exceeds IPC-A-610C Class II

## PIN DESIGNATIONS

| Pin | Nama     | Function                                                                                |
|-----|----------|-----------------------------------------------------------------------------------------|
| PIN | Name     | Function                                                                                |
| 1   | Vin(+)   | Positive input voltage                                                                  |
| 2   | ON/OFF   | TTL input to turn converter on and off, referenced to $Vin(-)$ , with internal pull up. |
| 4   | Vin(-)   | Negative input voltage                                                                  |
| 5   | Vout(-)  | Negative output voltage                                                                 |
| 6   | SENSE(-) | Negative remote sense (See note 1)                                                      |
| 7   | TRIM     | Output voltage trim (See note 2)                                                        |
| 8   | SENSE(+) | Positive remote sense (See note 3)                                                      |
| 9   | Vout(+)  | Positive output voltage                                                                 |


Notes:

- 1) SENSE(-) should be connected to Vout(-) either remotely or at the converter.
- 2) Leave TRIM pin open for nominal output voltage.
- 3) SENSE(+) should be connected to Vout(+) either remotely or at the converter.

# Technical Specification IQ24xxxHEXxx

# PART NUMBERING SYSTEM

The part numbering system for SynQor's dc-dc converters follows the format shown in the example below.



The first 12 characters comprise the base part number and the last 3 characters indicate available options. The "-G" suffix indicates 6/6 RoHS compliance.

# **Application Notes**

A variety of application notes and technical white papers can be downloaded in pdf format from our **Website**.

**RoHS Compliance:** The EU led RoHS (Restriction of Hazardous Substances) Directive bans the use of Lead, Cadmium, Hexavalent Chromium, Mercury, Polybrominated Biphenyls (PBB), and Polybrominated Diphenyl Ether (PBDE) in Electrical and Electronic Equipment. This SynQor product is 6/6 RoHS compliant. For more information please refer to SynQor's RoHS addendum available at our <u>RoHS Compliance / Lead</u> Free Initiative web page or e-mail us at rohs@synqor.com.

# **Contact SynQor for further information:**

| Phone:     | 978-849-0600         |
|------------|----------------------|
| Toll Free: | 888-567-9596         |
| Fax:       | 978-849-0602         |
| E-mail:    | power@synqor.com     |
| Web:       | www.synqor.com       |
| Address:   | 155 Swanson Road     |
|            | Boxborough, MA 01719 |
|            | USA                  |

# **ORDERING INFORMATION**

The tables below show the valid model numbers and ordering options for converters in this product family. When ordering SynQor converters, please ensure that you use the complete 15 character part number consisting of the 12 character base part number and the additional characters for options. Add "-G" to the model number for 6/6 RoHS compliance.

| Model Number    | Input<br>Voltage | Output<br>Voltage | Max Output<br>Current |
|-----------------|------------------|-------------------|-----------------------|
| IQ24280HEw14xyz | 18-36            | 28 V              | 14.0                  |
| IQ24500HEw08xyz | 18-36            | 50 V              | 8.0                   |

The following options must be included in place of the w x y z spaces in the model numbers listed above.

| Options Description: w x y z                                                                                                  |              |            |                                                                         |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-------------------------------------------------------------------------|--|--|
| Thermal Design Enable Logic Pin Style Feature S                                                                               |              |            |                                                                         |  |  |
| C - Encased with Threaded<br>Baseplate<br>D - Encased with Non-Threaded<br>Baseplate<br>V - Encased with Flanged<br>Baseplate | N - Negative | R - 0.180" | A - Standard w/<br>auto-recovery OVP<br>S - Standard w/<br>latching OVP |  |  |

Not all combinations make valid part numbers, please contact SynQor for availability. See the Product Summary web page for more options.

# PATENTS

SynQor holds the following U.S. patents, one or more of which apply to each product listed in this document. Additional patent applications may be pending or filed in the future.

| 5,999,417 | 6,222,742 | 6,545,890 | 6,577,109 | 6,594,159 |
|-----------|-----------|-----------|-----------|-----------|
| 6,731,520 | 6,894,468 | 6,896,526 | 6,927,987 | 7,050,309 |
| 7,072,190 | 7,085,146 | 7,119,524 | 7,269,034 | 7,272,021 |
| 7,272,023 | 7,558,083 | 7,564,702 |           |           |

### Warranty

SynQor offers a two (2) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.

Information furnished by SynQor is believed to be accurate and reliable. However, no responsibility is assumed by SynQor for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SynQor.